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A Fast Reliable Image Quality Predictor by
Fusing Micro- and Macro-Structures

Ke Gu, Leida Li, Member, IEEE, Hong Lu, Xiongkuo Min, and Weisi Lin, Fellow, IEEE

Abstract—A fast reliable computational quality predictor
is eagerly desired in practical image/video applications,
such as serving for the quality monitoring of real-time
coding and transcoding. In this paper, we propose a new
perceptual image quality assessment (IQA) metric based
on the human visual system (HVS). The proposed IQA
model performs efficiently with convolution operations at
multiscales, gradient magnitude, and color information
similarity, and a perceptual-based pooling. Extensive exper-
iments are conducted using four popular large-size image
databases and two multiply distorted image databases,
and results validate the superiority of our approach over
modern IQA measures in efficiency and efficacy. Our metric
is built on the theoretical support of the HVS with lately
designed IQA methods as special cases.

Index Terms—Color information, gradient operator, per-
ceptual image quality assessment (IQA), pooling, structure.

I. INTRODUCTION

QUALITY assessment and monitoring play a crucial role
in various respects of scientific research and applicational

development. For the sake of the continuous increase in com-
plexity and expense of systems and softwares, quality degrada-
tion is more easily introduced than ever before. On one hand,
the issue of fault diagnosis and detection, particularly quality
related, have aroused much attention very recently [1]–[6], and
on the other hand, some significant progress has been made in
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the study of quality-based optimization and visual enhancement
[7]–[10].

In this paper, we investigate the problem of full-reference
(FR) image quality assessment (IQA), which can be used for
the quality monitoring in real-time coding and transcoding sys-
tems replacing the traditional manual labor. It has come to a
broad agreement that subjective assessment is the decisive cri-
terion for a given image/video signal, since human beings are
usually the ultimate consumers. Subjective assessment is how-
ever costly, time consuming, and labor intensive, and it turns out
to be hardly incorporated into practical applications. Therefore,
a vast majority of researches has been devoted to the exploration
of objective IQA metrics toward simulating subjective opinion
scores via mathematical models [11].

One type of classical solution to modeling FR-IQA models
resort to the measurement of structural similarity between the
original and distorted images [12] and its variants improved from
different perspectives [13]–[16]. The second type of FR-IQA
models were devised using other advanced tactics, e.g., assum-
ing that the human visual system (HVS) implements two distinct
manners when predicting the image quality [17]–[19]. It was
found lately that low-level visual features, especially the image
gradient magnitude (GM), perform effectively in image quality
evaluation. On this basis, several prevailing IQA methods were
proposed by combining the GM with visual saliency, masking
effects, and free energy theory systematically [20]–[24].

Despite the successfulness of numerous IQA methods, the
pursuit of more effective and efficient algorithms is never
changed. To this end, we in this paper come up with a novel
image quality metric based on Perceptual SIMilarity (PSIM)
measure. To specify, considering some prior knowledge about
the human perception to visual quality, our PSIM algorithm
works with four steps. First, we extract the GM maps of the
input original and distorted images inspired from the fact that
the center-surround cell in eyes conducts a local comparison
exhibiting a lateral inhibition [25] and moreover the GM im-
plements better in IQA tasks than other frequently used local
operators such as Laplacian of Gaussian (LOG). The second and
third steps in the proposed IQA method are to compute the sim-
ilarity of GM maps at multiscales (MS) since the HVS usually
employs MS decomposition [26], [27], and to measure the chro-
matic channel degradation caused by artifact injection due to the
important influence of chromatic information in visual percep-
tion [28], [29]. In the fourth step, a reliable perceptual-based
pooling groups visual degradation measures above to predict
the objective quality.

0278-0046 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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The remainder of this paper is organized as follows. In
Section II, our IQA metric is introduced in detail. Section III
provides results of experiments on six image databases
(LIVE [30], CSIQ [18], TID2008 [31], TID2013 [32], LIVEMD
[33], and MDID2013 [34]) for demonstrating the superiority
and efficiency of the proposed PSIM model. We summarize the
contributions and draw the conclusions in Sections IV and V.

II. PROPOSED PSIM METHOD

A. Gradient Magnitude Extractor

During the last decades, it has been widely accepted that
structural information, particularly the image gradient, serves
as one of the most significant function in evaluating perceived
quality [20]–[24]. To be more concretely, given an image signal
s, the famous Prewitt operator [35] is applied to the gradient
extraction as

g =
√

g 2
h + g 2

v (1)

where gh = ph � s and gv = pv � s with the symbol “�” being
the convolution operation. ph = [1, 0,−1; 1, 0,−1; 1, 0,−1]
and pv = pT

h , separately indicating Prewitt convolution masks
in the horizontal and vertical directions. In Fig. 1, we display
an intuitive example including five images chosen from the
TID2013 database [32] and their corresponding GM maps.

As a matter of fact, given a visual signal input, the center-
surround cell conducts a local comparison, which exhibits the
lateral inhibition; that is to excite light in the center while in-
hibiting light in the surround. The used gradient operator can
be treated as a fast and effective manner to perform the local
comparison. Other similar operators, such as LOG, Sobel, and
Scharr operators, can be also applied here but instead, by tests,
bring at least 2% performance reduction. So the Prewitt operator
is used in our PSIM metric.

B. Gradient Magnitude Similarity

Similarity measure is conducted on the GM maps between the
original and distorted images. According to suggestions given
in psychophysical masking studies [26] and neuropsychological
recordings in [27], there exist mechanisms selective to narrow
ranges of spatial frequencies and orientations. To mimic the
above-mentioned function which possibly happens in the visual
cortex, MS decompositions are commonly used in building vi-
sual models, e.g., in the IQA study [13]. But that MS strategy
is not efficient enough for real-time applications, which encour-
ages us to develop a concise and practical MS model instead.

1) Microstructural Similarity: In the design of our ap-
proach, a two-scale model, due to its efficacy and efficiency, is
taken into account. First, we use the Prewitt operator to con-
volve the original and distorted images twice at a large scale
where an image is processed by a low-pass filter and then down
sampled by a proper factor of 2. We denote the original image
and its distorted one as o and d, and the associated GM maps
as ġo and ġd . Five sample images are exhibited in Fig. 1(a)–(e),
which are chosen from the TID2013 database and composed
of the source image and four distorted images corrupted by

“white noise,” “Gaussian blur,” “JPEG compression” and “lo-
cal block-wise distortions of different intensity,” and their GM
maps in Fig. 1(f)–(j). As seen, the features ġo and ġd succeed
in conducting local comparisons.

In practice, it was found that most existing IQA methods
implement this downsampling procedure before predicting vi-
sual quality [12], [20], [23], [24]. In our recent work [15], we
managed to search for the optimal scale according to the image
size and the given viewing distance. By analysis in the spatial
domain, an appropriate scaling coefficient z is approximated to
be the square root of the ratio of the image size and the focused
visual scope

z =

√A
Ã =

√
h ∗ w

h̃ ∗ w̃

=

√
1

4 tan
(

θh

2

) ∗ tan
(

θw

2

) ∗
(

h

d

)2

∗ r (2)

where d is the viewing distance; A and Ã stand for the image
size and the visual scope at the given d; h and w are the image
height and width; h̃ and w̃ are the visual height and width; θh and
θw separately indicate horizontal and vertical visual angles; r
represents the aspect ratio of image width to height, i.e., r = w

h .
With empirical parameters about visual angles1 and reasonable
hypothesis about image sizes and the viewing distance,2 the
scaling coefficient z is found to be 0.4955 (≈0.5). So the used
downsampling factor “2” can be considered as approximately
optimal in typical viewing conditions.

Next, we employ the frequently used similarity measure to
detect the difference of GM maps between the original image
and its contaminated version at a large scale stated above

ġm (o,d) =
2 (ġo) ∗ (ġd) + c1

(ġo)2 + (ġd)2 + c1
(3)

where c1 is a positive fixed number to avoid the instability. This
similarity metric has the following three advantages:

1) symmetry: ġm (o,d) = ġm (d,o);
2) boundedness: ġm (o,d) ≤ 1;
3) unique maximum: ġm (o,d) = 1 if and only if o = d.

In Fig. 2, we display four ġm maps associated to Fig. 1(b)–(e)
with respect to Fig. 1(a), where the brighter gray level means
the higher similarity and thus the lower-level distortion. It can
be viewed that ġm , the GM maps’ difference at a large scale, is
good at reflecting the variations in microstructure (e.g., details)
of the original and distorted images.

2) Macrostructural Similarity: Visual saliency has long
been applied to numerous valuable applications, for instance,
tone mapping operation [37], contrast enhancement [7], [8],
fixation prediction [38], visual tracking [39]–[41], quality eval-
uation [10], [24], etc. However, in [24], it was viewed that

1Horizontal and vertical visual angles are generally assigned to be about 120◦
and 150◦ [36]. Since the real view angle becomes narrower to about one third of
the common value when one concentrates on the details of an image and scores
it. The horizontal and vertical visual angles can be reasonably considered to be
40◦ and 50◦, respectively.

2In this paper, we suppose that typical images are of the aspect ratio 3:2 and
the general viewing distance is about three times the image height, as used in
most image databases.



GU et al.: FAST RELIABLE IMAGE QUALITY PREDICTOR BY FUSING MICRO- AND MACRO-STRUCTURES 3905

Fig. 1. Sample images from the TID2013 database [32] and associated GM maps: (a) original image; (b) white noise; (c) Gaussian blur; (d) JPEG
compression; (e) local block-wise distortions of different intensity; (f)–(j) GM maps of (a)–(e).

Fig. 2. Illustration of ġm maps corresponding to Fig. 1(b)–(e).

state-of-the-art saliency detection techniques that predict fix-
ations better, e.g., image signature (IS) model [42], perform
worse in assessing image quality as compared to saliency de-
tection models which have inferior fixation predictions, e.g., Itti
model [44]. In general, visual saliency theory tells that humans
pay more attention to salient regions in an image, but from the
images shown in Fig. 1(b) and (d), we can see that the artifacts
which play a significant role in degrading the visual quality are
located in the smooth “sky” regions at the top of images instead
of salient “chalet” area in the middle. So we have a reason to
suppose there may exist a mechanism which takes effect and is
related to visual saliency. We hypothesize that this mechanism
mainly concerns the variations in macrostructure (e.g., contours)
of images.

To measure such variations in macrostructure, we compute
the GM maps at a small scale to compare the difference between
the original and distorted images, and denote the associated GM

map of the original image as g̈o and that of the distorted one as
g̈d . Afterward, we exert a distance metric, which is a similarity
measure typically used in the computer vision field, on the GM
maps at a small scale

g̈m (o,d) =
min(g̈o , g̈d) + c2

max(g̈o , g̈d) + c2
(4)

where c2 is for stability when the denominator is extremely
small. Similarly, this distance metric also has three advantages
of symmetry, boundedness, and unique maximum.

The GM map extracted at a small scale characterizes the
macrostructure of an image.3 We normalize the GM map using
a Gaussian kernel to smooth it. It was found that the smoothed
GM map basically detects the salient regions in an image, and
the result is highly similar to the saliency map computed by
the state-of-the-art IS model [42]. We take an example to il-
lustrate this. Five sample images of the same size 681 × 511
were chosen from the classical Toronto dataset [45]. These five
images include various scenes, as given in the leftmost column
in Fig. 3. The smoothed GM map at a small scale4 are given
in the middle column in Fig. 3, and the saliency maps com-
puted using the popular model [42] are used for comparison,
as given in the rightmost column in Fig. 3. The phenomenon is
surely not a coincidence. In [46], the authors have revealed that,
for natural images, a gradient operator combined with Gaussian
postprocessing at a small scale is capable of searching for salient
objects, just as the examples provided in Fig. 3. Experimental
results demonstrate that our proposed metric is superior to the
recently developed visual saliency-based quality index (VSI)
[24]. Based on the analysis and results stated above, we believe
that the reason why using visual saliency is benefit for raising
IQA performance is that the macrostructure is included in the
detected salient areas.

3In this paragraph, “the GM map” means “the GM map extracted at a small
scale.” We omit “extracted at a small scale” for simplicity.

4In this implementation, we follow a popular transforming coefficient used
in the popular model [42], [43], and resize the image to a coarse 64 × 48 pixel
representation.
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Fig. 3. Comparison of saliency detection algorithms: The leftmost col-
umn shows the representative images in the Toronto dataset [45], the
middle shows the GM maps computed at a small scale, and the rightmost
shows the saliency maps detected by using [42].

The design principle behind our proposed PSIM metric is an
improved version of the concept of the MS structure. It is rea-
sonable that humans implement two typical perceptions when
understanding a visual input. One is the basic perception, which
is used to estimate the macrostructure, e.g., the completeness
of objects; the other is the detailed perception, which is used
to measure the microstructure, e.g., the sharpness of edges. To-
ward keeping the design principle consistent with the typical
“multiscale,” we associate structures in “large scale” and “small
scale” with basic perception and detailed perception of humans.

C. Color Information Similarity

Since color information plays a significant part in visual per-
ception [28], [29], we also take account of the variations in
chrominance channels of the distorted image compared to its
original one. Before computing the GM maps, the simple and
widely used YIQ color space [47] is applied to transfer an input
RGB color image

⎧
⎨
⎩

y = 0.299 r + 0.587g + 0.114b
i = 0.596 r − 0.274g − 0.322b
q = 0.211 r + 0.523g + 0.312b

(5)

where y conveys the luminance information and i and q the
chrominance information. In this study, we use y to compute

the GM maps at two (large and small) scales, and use i and q
to measure the chromatic distinction between the original and
distorted images as follows:

im (o,d) =
2 (io) ∗ (id) + c3

(io)2 + (id)2 + c3
(6)

qm (o,d) =
2 (qo) ∗ (qd) + c3

(qo)2 + (qd)2 + c3
(7)

where io and id (qo and qd ) indicate i (q) chromatic channels
of images o and d. c3 is of similar function to c1 and c2 .

D. Perceptual-Based Pooling

After implementing GM similarity measures at two scales,
how to pool them validly is still a tough problem. A natural
strategy is the simplest global average, defined as follows:

1) for GM similarity at a large scale:

Lα =
1
U

U∑
u=1

(ġm (ou , du ))α ; (8)

2) for GM similarity at a small scale:

Sβ =
1
V

V∑
v=1

(g̈m (ov , dv ))β ; (9)

3) for color information similarity:

Cθ =
1
W

W∑
w=1

(im (ow , dw )qm (ow , dw ))θ (10)

where α, β, and θ are three positive fixed numbers; U , V , and
W represent the total number of elements in the vector.

The pooling schemes were however found to work poorly,
since they treat the distortions of different types and locations
equally. To address this problem, it is natural to also consider
the high-distortion-based pooling (i.e., quality-based pooling),
whose intuitive idea is to emphasize high-distortion regions.
From the perspective of saliency, locations of high-distortion
levels attract more viewers’ attentions, resulting in a serious
degradation on the perceived visual quality. As a result, we
further make use of the high-distortion-based pooling which is
defined by

Hτ =
1
X

X∑
x=1

(ḣm (ox, dx))τ (11)

where ḣm is the vector consisting of the smallest γ% values in
ġm ; τ is a positive constant of similar function to α, β, and θ;
X is the number of elements in the vector ḣm .

We finally fuse the aforementioned four features together and
derive the PSIM metric (as seen in Fig. 4) to be

PSIM =
Hτ

Lα
∗ Sβ ∗ Cθ (12)

where α, β, θ, and τ are fixed parameters. Toward reliably
determining the parameters used in our PSIM algorithm, we de-
ploy a two-phase strategy. In the first phase, we initialize those
parameters using the state-of-the-art VSI metric and big-data
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Fig. 4. Illustration for the computing scheme of our PSIM metric. o and d represent the original and distorted images.

images. To specify, we use 20 distortion types and 10 distortion
intensities to corrupt the 500 pristine images in the Berkeley
database [48] and thus generate 100 000 distorted images. We
label those images with the quality scores of the VSI metric for
determining the parameters used in our PSIM model. We adopt
a robust and highly generalized regression method, maximum-
rank order correlation coefficient estimator (MROCCE) [49], for
validly estimating the model parameters. The MROCCE targets
to make the Kendall’s rank order correlation coefficient of the
quality scores between our model and VSI metric maximized.
More information can be directed to [49]. Having initialized
the used parameters, in the second phase, we follow the method
applied in [50] to fine tune the parameters used in our PSIM met-
ric. A leave-one-out cross-validation procedure is implemented
to ensure the robustness of the proposed PSIM approach. In
terms of image contents, we divide the TID2013 database into
24 training sets, which includes 2880 images, and one testing
set, which includes 120 images. We repeat the above division 25
times and use the MROCCE method to yield 25 groups of values
of parameters. It was observed that the 25 groups of parameters
are different but fairly close to each other, which indicates the
robustness of the estimated parameters, and thus we eventually
selected one group of parameters.

The design philosophy behind the above pooling scheme is
not just intuitive. The values of α, β, θ, and τ are very small
numbers. Hence we can approximate (15) based on the Cheby-
shev’s inequality and derive

PSIM ≈ Hτ

Lτ
∗ Lφ ∗ Sβ ∗ Cθ (13)

where φ = τ − α > 0. The first term indicates that for diverse
images with the same Lτ , the more uneven distribution of distor-
tion levels (gauged by Hτ ) will give rise to the worse quality. The
second and third terms reflect the variations of microstructure
and macrostructure between the original and distorted images.
And the last term estimates the difference in light of the color

information. Moreover, via extensive tests, the proposed pool-
ing scheme leads to 3%∼7% performance gain beyond popular
existing pooling strategies [51]. Note that, as compared with
a previous conference paper [52], this work supplements more
features toward better performance, and meanwhile, provides
detailed discussions about why choose these features, how to
determine parameters, etc.

III. EXPERIMENTAL RESULTS

A. Evaluation Protocols

In this paper, four large-scale databases with totally 6345 dis-
torted images are used as testing beds for IQA evaluations. The
first is the LIVE database [30], which was explored at the Uni-
versity of Texas at Austin in the year of 2006 and consists of 779
distorted images associated with 29 original versions and five
typical distortion types. The second one is the CSIQ database
[18], which was completed at Oklahoma State University in
the year of 2009 and contains 866 images created by exerting
six distortion types at four to five distortion intensities on 30
sources. The third and fourth databases are TID2008 [31] and
TID2013 [32], built by a joint international effort across Fin-
land, Italy, and Ukraine in 2008 and 2013. In TID2008, there
are 1700 images in sum, by corrupting 25 references with 17
degradation types at four distortion levels. TID2013 covers up to
3000 images from the same 25 sources with 24 distortion types
at 5 various intensities. We summarize the main information in
Table I.

The performance of an IQA approach is typically evaluated
from three aspects from the angle of prediction power [53]:

1) prediction accuracy;
2) prediction monotonicity;
3) prediction consistency.

The computation of the correlation performance requires a
regression procedure to decrease the nonlinearity of predicted
scores. Denoting so , sp , and sm as the vectors of the original
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TABLE I
SUMMARIZATION OF MAIN INFORMATION ABOUT IMAGE QUALITY DATABASES TESTED

Databases LIVE [30] CSIQ [18] TID2008 [31] TID2013 [32] LIVEMD [33] MDID2013 [34]

Number of reference images 29 30 25 25 15 12
Number of distorted images 779 886 1700 3000 450 324
Number of distortion types 5 6 17 24 5 1
Number of observers 29 35 838 971 37 25
Image format BMP PNG BMP BMP PNG PNG
Establishing time 2007 2009 2008 2013 2012 2013
Establishing place USA USA Finland Finland USA China

IQA scores, the IQA scores after regression and the subjective
MOS values, the logistic regression function is deployed for the
nonlinear regression [53]

sp = π1

(
1
2
− 1

1 + eπ2 (so −π3 )

)
+ π4so + π5 (14)

where π1 to π5 are regression model parameters that are deter-
mined during the curve fitting process.

After the regression, five indices are used for performance
measures [53]. The first and second indices are the Spearman
rank order correlation coefficient (ξS ) and the Kendall’s rank
order correlation coefficient (ξK ) between sp and sm , for eval-
uating the prediction monotonicity. The third one is the Pearson
linear correlation coefficient (ξP ) between sp and sm , in order to
estimate the prediction accuracy. The last two are the root mean
square error (ξR ) and the mean absolute error (ξM ) between sp

and sm , to judge the prediction consistency. Of the above five
indices, a good IQA model is expected to attain high values in
ξS , ξK , and ξP , as well as low values in ξR and ξM .

B. Performance Measures

Two types of seven IQA models are used in our tests for com-
parison. The first type of metrics includes three classical PSNR,
SSIM [12], and VSNR [17], which are extremely good at the
quality prediction of images corrupted by commonly encoun-
tered distortion types, e.g., noise, blur, and compression. The
second type includes four recently developed GSM [21], IGM
[22], GMSD [23], and VSI [24].

As tabulated in Table II, the proposed PSIM algorithm has
achieved significantly higher correlation performance on the
popular four large-scale image databases. To specify, on the
LIVE database, the accuracy of our method is beyond 95% in
ξS and ξP . In terms of prediction monotonicity (ξS and ξK ),
the proposed PSIM metric is the best across the IQA metrics
tested. In the comparison about prediction accuracy (ξP ) and
consistency (ξR ), our approach has also attained the second-
place performance results.

The obvious superiority of our PSIM method is validated
on the TID2008 and CSIQ databases as well, beating other
competing quality measures. The proposed model has gained
very high prediction monotonicity and accuracy (ξS and ξP ) of
larger than 96% on the CSIQ database, and of larger than 90%
on the TID2008 database. Our technique is clearly better than
other competing IQA models.

On the TID2013 database, there is only our PSIM metric
acquiring the prediction accuracy of beyond 90%. Apart from
this, in the comparison of prediction consistency (ξR and ξM ),
our IQA metric has attained the top performance among all
the tested IQA models. In the comparison of prediction mono-
tonicity (ξS and ξK ), our measure is just a little lower than the
lately designed VSI metric, which combines various kinds of
complicated models.

We further conduct comprehensive comparisons using two
commonly seen average measures, as defined by

δ̄ =
∑

i ci · fi∑
i fi

(15)

where fi and ci (i = 1, 2, 3, 4) indicate weighting parameters
and correlation measures for four testing databases. For the first
direct average, all of di are set as one. For the second database
size-weighted average, we assign di as the number of images in
each database, i.e., 779 for LIVE, 1700 for TID2008, 866 for
CSIQ, and 3000 for TID2013. Table II lists the aforesaid two
average results across the entire eight IQA measures. Note that
there exist remarkable differences in the ranges of MOS/DMOS
in distinct databases, which makes the comparison of predic-
tion consistency (ξR and ξM ) not fair, so we divide ξR and ξM

by the maximum dynamic range of subjective scores in each
database before computing the average results using (16). It is
apparent that our PSIM method has constantly obtained bet-
ter prediction accuracy on average performance comparison,
largely superior to the second- and third-place VSI and GMSD
algorithms.

C. Computational Cost

Table III provides the average run time of the eight IQA
methods on the overall 3000 images of size 512 × 384 in the
TID2013 database. The entire quality measures were run using
the software platform of MATLAB R2010a (7.10.0) on a com-
puter with 3.40 GHz CPU processor and 4.00 GB RAM. All the
source codes of competing IQA methods were obtained from
their authors or websites. It can be easily found that our PSIM
model merely needs less than 40 ms, about three times faster
than the recently explored VSI metric, which has achieved the
second best correlation performance. The implementation time
of each IQA algorithm tested on LIVE, CSIQ, and TID2008
databases are also reported in Table III for comparison. From
the results, we can derive the similar conclusions.
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TABLE II
PERFORMANCE MEASURES ON FOUR TESTING DATABASES AND TWO AVERAGES

We bold the best two performed algorithms.

TABLE III
COMPARISON OF COMPUTATIONAL COST (MILLISECONDS/IMAGE) ON THE

FOUR TESTING IMAGE DATABASES

Metrics PSNR SSIM VSNR GSM IGM GMSD VSI PSIM

TID2013 1.60 19.9 175 11.3 10 784 3.95 116 38.1
LIVE 3.76 34.5 269 19.1 17 641 6.84 154 62.8
CSIQ 2.07 24.7 214 13.8 13 163 5.15 131 47.5
TID2008 1.51 19.7 179 11.3 9512 3.95 114 38.1

D. Intuitive Comparison

We also show the scatter plots of subjective DMOS values ver-
sus objective quality predictions of the eight testing IQA algo-
rithms on the CSIQ database, as illustrated in Fig. 5. For a com-
prehensive comparison, in each scatter plot the sample points
corresponding to different distortion types are discriminated by
distinct colors: red for additive white Gaussian noise (AWGN);
green for JPEG compression; blue for JPEG2000 compression
(JP2K); cyan for additive pink Gaussian noise (APGN); magenta
for Gaussian blur; yellow for global contrast decrements (GCD).
Notice that a good IQA method should predict the visual qual-
ity consistently across distinct types of distortions. Referring to
Fig. 5, it can be seen that the scatter plot of the PSIM is more
concentrated across various groups of distortion categories, and
thus has better consistency. For instance, its sample points as-
sociated to the GCD distortion are near to other five distortion

types. Nonetheless, the sample points associated to the GCD
distortion for other testing IQA models are relatively far from
other five categories. The proposed IQA model is therefore able
to acquire such high performance accuracy.

E. Validation on Multiple Distortions

During the last few years, much attention has been shifted
to the quality evaluation of multiply distorted images. Two
databases (LIVEMD [33] and MDID2013 [34]) are further
applied for performance comparison. LIVEMD was the first
database for this issue, completed at the University of Texas at
Austin in the year of 2012. A pair of image subsets are separately
produced adding white noise or JPEG compression to blurred
images, making up 225 images in each subset and a total of 450
images in the database. MDID2013 was explored at Shanghai
Jiaotong University in the year of 2013. It consists of 324 images
produced by successively using Gaussian blur, JPEG compres-
sion, and additive white noise to corrupt ten original images of
size 768 × 512 for one half and of size 1280 × 720 for the rest.
For convenience, interested readers can be directed to Table I
for main information of the above-mentioned two databases.

We list the results of correlation performance in Table IV. On
the LIVEMD database, the scores of prediction accuracy (ξP )
and consistency (ξR ) for the proposed PSIM model are higher
than 0.85, better than or equivalent to other IQA measures tested.
In comparison, on the MDID2013 database, our PSIM method
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Fig. 5. Scatter plots of DMOS versus PSNR, SSIM, VSNR, GSM, IGM, GMSD, VSI and our PSIM metrics on the CSIQ database. AWGN: additive
white Gaussian noise (red); JPEG: JPEG compression (green); JP2K: JPEG2000 compression (blur); APGN: additive pink Gaussian noise (cyan);
GB: Gaussian blur (magenta); GCD: global contrast decrements (yellow).

TABLE IV
PERFORMANCE INDICES OF EIGHT TESTING IQA METRICS ON MULTIPLY DISTORTED LIVEMD AND MDID2013 DATABASES

works the best using correlations against reported subjective
opinion scores, beyond 0.85 for prediction accuracy (ξP ) and
consistency (ξR ).

IV. SUMMARIZATION

In this section, we will compare our proposed PSIM model
with recently proposed GMSD and VSI metrics, and reveal their
relationships and differences. We denote the vector ĝ as the GM
similarity map [23], in which the elements belong to [0, 1] with
most of them close to one, and denote S and E as the standard
deviation and global mean. The sign of “

.=” will be used below
to denote that both sides have the equal prediction monotonicity
(ξS and ξK ). Then we set

A = E(ĝ2) ≈ 1 B = E(ĝ)2 ≈ 1 (16)

Ȧ = 1 − A ≈ 0 Ḃ = 1 − B ≈ 0. (17)

According to the Taylor’s formula, when (−Ȧ) near to zero, we
have

ln(1 − Ȧ) = ln(1 + (−Ȧ))

= (−Ȧ) −
+∞∑
n=2

(−1)n (−Ȧ)n

n

≈ −Ȧ. (18)

Hence,

A

B

.= ln
A

B

= lnA − ln B

= ln(1 − Ȧ) − ln(1 − Ḃ)

≈ (−Ȧ) − (−Ḃ)

= − (1 − A) − (−(1 − B))

= A − B (19)

i.e.,

E(ĝ2) − E(ĝ)2 .=
E(ĝ2)
E(ĝ)2 . (20)

Fusing the above formulas, we derive from the GMSD [23]

GMSD = S(ĝ) = E(ĝ2) − E(ĝ)2 .=
E(ĝ2)
E(ĝ)2 . (21)

That is, GMSD can be approximated as the ratio of the local
distortion-based mean to the global mean, i.e., the component
H τ

Lα in (15). Next, as compared to the VSI metric [24], we
suppose the first term H τ

Lτ in (13) has a similar function of
max(V So, V Sd), where V So and V Sd stand for the saliency
maps of original and distorted images, and thus the proposed
PSIM model is a variant of the VSI metric. To sum up, our
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PSIM works as a general framework which basically reduces to
existing state-of-the-art IQA methods as particular cases.

Furthermore, in comparison to the recent GMSD and VSI
models, this paper has made several main contributions:

1) Using simple operators, PSIM has obtained the optimal
performance on average and promising computational
efficiency.

2) we have illustrated why, using the image GM (for ap-
proximating the function of the center-surround cell) and
downsampling (for approximating the influence of view-
ing distance and image resolution), which were applied
in GMSD and VSI without explanations.

3) we have presented a reliable supposition to illus-
trate why visual saliency takes effect in IQA because
the macrostructure is included in the detected salient
regions.

4) a perceptual-based pooling scheme, where a new strat-
egy is included for coarse and fine tunings of the pa-
rameters used, has been proposed to fuse the difference
of microstructure, macrostructure, and color information
between the original and distorted images.

V. CONCLUSION

In this paper, we introduced a novel fast perceptual-
based IQA metric. The proposed PSIM metric combines the
GM similarities at two scales, the color information similar-
ity, and a reliable perceptual-based pooling. We performed
the proposed IQA algorithm on four large-size singly dis-
torted image databases (LIVE, TID2008, CSIQ, and TID2013)
and two multiply distorted image databases (LIVEMD and
MDID2013). Results of experiments confirm that our PSIM
approach clearly performs better than classical and recent
visual quality evaluators in efficiency and efficacy compar-
isons. It is worthy to stress that the proposed model is a
general framework including some recently proposed IQA
methods as its special cases. The code will be released at
https://sites.google.com/site/guke198701/publications.
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